RKNN Toolkit Lite2
1 Toolkit Lite2 Installation
RKNN Toolkit Lite2 is a programming interface (Python) for the Rockchip NPU platform, used for deploying RKNN models on the board.
Test Environment
• System Version: Debian 12 • Tool Version: RKNN-Toolkit2 2.3.0 • Driver Version: NPU driver 0.8.8
Installation Steps
Toolkit-lite2 is suitable for board-side model deployment. For more dependencies and usage information, please check Rockchip_RKNPU_User_Guide_RKNN_SDK
To get RKNN Toolkit Lite2 on the board, you can download directly from official github
-
Get Installation Files:
git clone https://github.com/airockchip/rknn-toolkit2.git
cd rknn_toolkit_lite2/ -
Install Dependencies:
sudo apt update
sudo apt-get install python3-dev python3-pip gcc
sudo apt install -y python3-opencv python3-numpy python3-setuptools -
Install Package:
# Debian 12 (Python 3.10)
pip3 install packages/rknn_toolkit_lite2-2.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl -
Verify Installation:
from rknnlite.api import RKNNLite # No error means successful installation
2 Toolkit Lite2 Interface Usage
Deployment Process
- Create
RKNNLite
object - Call
load_rknn
to import the model (must match the hardware platform) - Call
init_runtime
to initialize the runtime environment - Call
inference
for inference - Process inference results
- Call
release
to release resources
Interface Documentation
Refer to the user manual in the rknn_toolkit_lite2/docs
directory.
3 Board-Side Inference Test
Precautions
• Ensure the board has the librknnrt.so
runtime library installed (default path: /usr/lib
)
• The version must match RKNN-Toolkit2 to avoid compatibility issues (e.g., error Invalid RKNN model version
)
3.1 Resnet18 Inference Test
- Run Example:
cd examples/inference_with_lite
python3 test.py - Output Example:
--> Load RKNN model done
--> Init runtime environment done
--> Running model
resnet18
-----TOP 5-----
[812]: 0.9996760487556458
[404]: 0.00024927023332566023
...
4 References
https://github.com/airockchip/rknn-toolkit2
https://github.com/rockchip-linux/rknn-toolkit2
https://github.com/rockchip-linux/rknpu2
Note
Ensure the RKNN model and runtime library versions are consistent to avoid compatibility issues.