跳到主要内容

Model Zoo

本章节主要介绍进迭时空 Model Zoo 相关内容。

1 模型列表

Classification

Model Name
Fp32 top1/%
Quant top1/%1线程推理耗时@1.6GHz/ms
2线程推理耗时@1.6GHz/ms
4线程推理耗时@1.6GHz/ms模型链接
resnet1869.6469.6438.469928.28917.2622
resnet5075.4676.00100.0671.57145.1088
seresnet5079.2679.00115.11390.692562.0626
resnext5080.6479.28149.82126.746100.67
mobilenet_v171.6471.4229.921621.016613.1717
mobilenet_v271.3271.6634.104223.806816.0097
mobilenet_v3_large73.2673.2054.309535.186325.6427
efficientnet_v1_b176.776.1114.63286.380956.6777
efficientnet_v2_s80.379.68149.592111.91777.4648
v100_gpu64_6ms74.5874.8257.63748.233535.2046
shufflenet_v2_x1_068.7268.637.077631.827326.3727
inception_v166.0465.1125.06885.286460.1591
inception_resnet_v280.1880.04313.24226.824142.386
inception_v376.7476.32121.43386.510855.4845
repvgg71.8271.724.825318.321712.5148
squeezenetv1.156.1256.1818.948714.708711.3769
swin-tiny_16xb64_in1k80.2679.91614.541273.491087.9

Detection

  • 检测模型默认包含后处理,不包含前处理
Model Name
Fp32 mAP/%Quant mAP/%1线程推理耗时@1.6GHz/ms
2线程推理耗时@1.6GHz/ms
4线程推理耗时@1.6GHz/ms模型链接
yolov5_n_dyn(320x320)95.867885.569867.9318
yolov5_s_dyn(320x320)150.188118.76288.8557
yolov6p5_n(320x320)40.011429.97323.655
ssd-mobilenet(300x300)58.156343.145925.629
nanodet-plus-m(320x320)84.949772.183759.2333

Pose

Model Name
Fp32 mAP/%Quant mAP/%1线程推理耗时@1.6GHz/ms
2线程推理耗时@1.6GHz/ms
4线程推理耗时@1.6GHz/ms模型链接
rtmdet-nano71.435254.923941.8441
rtmpose-t36.526928.696923.0973
rtmpose-s47.643237.678928.9216

2 常见问题(FAQ)

欢迎大家踊跃提问